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USA 
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Abstract. This paper concludes our formulation of a manifestly gauge-invariant, time- 
dependent perturbation theory for a non-relativistic, spinless charged particle interacting 
with a classical, external electromagnetic radiation field. In this paper, we consider the 
treatment of the degenerate bound states and the states in the continuum. We have found 
that the gauge-invariant and the conventional perturbative solutions agree on the net 
transition rates but disagree on the transition amplitudes and transition probabilities. The 
treatment of a realistic physical system can be obtained by combining the treatment here 
with that in a previous paper for a non-degenerate system. 

1. Introduction 

In the investigation of the gauge-invariant formulation of a quantised particle interact- 
ing with classical, external electromagnetic fields, there are theoretical and practical 
aspects. The theoretical investigation concerns the exact quantities and the basic 
physical principles involved (Yang 1976, 1982a, b, Cohen-Tannoudji et a1 1977, Kobe 
and Smirl 1978, Leubner and Zoller 1980, Kobe and Wen 1980, 1982, Leubner 
1981, Shirokov 1981, Kobe e ta1  1982, Kobe 1983). i t  therefore provides the necessary 
foundations for an understanding of the basic mechanism of how a charged particle 
interacts with the fields. An analysis by Shirokov (1981) illustrates the usual confusion 
inherent in the theoretical investigation: that the proofs valid for processes pertaining 
to the S-matrix formalism are often mistakenly applied to processes for which the 
usual S-matrix formalism does not apply. (See also Yang (1982b) for a different 
analysis.) 

The practical aspect of the investigation deals with how to devise some approxima- 
tion procedures to solve the differential equations for the probability amplitudes 
formulated in the theoretical investigation. Here, one overriding concern is still the 
manifest gauge invariance. Because of this requirement, only those approximation 
procedures with the correct gauge properties can be used to solve for the probability 
amplitudes in our formulation. Our previous paper dealing with the time-dependent 
perturbation theory (TDPT) of a non-degenerate system is just one such example (Yang 
1982c, to be referred to as I). An excellent review of the applications of the gauge- 
invariant formulation can be found in Lee and Albrecht (1983). 

t Present address: Physics Department, St Ambrose College, Davenport, Ia 52803, USA. 
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920 K-H Yang 

The main purposes of I are to establish our notation, and to introduce the concept 
and carry out the proofs of manifest gauge invariance in the perturbation theory. 
(The gauge invariance in an exact theory and that in a perturbation theory demand 
some careful distinctions.) The treatment in I alone is not sufficient to deal with the 
electromagnetic interaction of any realistic systems since all such systems usually 
exhibit some kinds of degeneracy. It can, however, be considered to be a good 
approximation when the complete Hilbert space of the particle system is truncated 
into a finite number of non-degenerate states and if the effects due to the truncation 
are estimated to be small. For example, in a process involving the near resonant 
interaction of an atom with a coherent laser field (e.g. Sargent et a1 1977, Knight and 
Milonni 1980), a two-state approximation is often sufficient. 

The purpose of this second paper is to conclude our formulation of the gauge- 
invariant TDPT by extending our treatment to include the degenerate states. The 
system to be considered is still that of a non-relativistic, spinless charged particle 
interacting with classical, external electromagnetic fields. Here, we will consider two 
kinds of degeneracy: that of the discrete (bound) states and that of the states in the 
continuum (scattering states). The treatment to be developed here is intended for an 
arbitrary radiation field. If the field encountered exhibits some special characteristics, 
e.g. a circularly polarised radiation field, then a different treatment is more appropriate. 
It will not be discussed here. 

The arrangement of this paper is as follows. In 9: 2, we shall briefly review the 
exact gauge-invariant formulation and establish our notation suitable for the particular 
situation here. In 9 3, we first examine the eigenfunction and eigenvalue corrections 
of the energy operator (HB)  obtained by the usual Rayleigh-Schrodinger (RS) pro- 
cedure (e.g. Messiah 1966) for bound states. Due to the degeneracy, the ‘zeroth-order’ 
eigenfunctions obtained from this procedure generally involve the fields (through the 
A dependence in Vi defined in (3.2)). Because of this property, the ‘nth-order’ 
eigenfunctions will not have the simple A” dependence. Thus, for the purpose of 
developing a TDPT, we investigate an alternative procedure that does permit 
perturbative solutions (using the potentials and/or fields as the expansion parameters). 
Also in this section, we review the usual procedure for obtaining the exact and 
perturbative solutions of the scattering states (e.g. Goldberger and Watson 1964). 

In 9 4, we use the perturbative solutions discussed in 0 3 to formulate our TDPT 
and derive the perturbative rates of transition due to a single-frequency radiation 
field. Here, all the formal proofs of manifest gauge invariance will be omitted since 
the methods for a non-degenerative system still apply. Finally in 9 5, we conclude 
this series of two papers by examining once again the simplest gauge problem from 
which this author started his investigation on the gauge-invariant formulation (Yang 
1976)-the problem whether A * p  or r E should be used as the transition operator 
when the time-varying field is treated in the dipole approximation E(r,  t j  =E(O, t )  
and B(r ,  t )  = 0 (Lamb 1952). 

2. The gauge-invariant formulation 

In this section, we shall briefly review the gauge-invariant formulation and the physical 
principles involved, and establish our notation necessary for the particular situation 
to be considered. A perspective of the theory and a very detailed discussion of the 
exact manifest gauge invariance can be found in Yang (1976,1982a), Cohen-Tannoudji 
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et a1 (1977), Kobe and Smirl (1978), Leubner and Zoller (1980), Leubner (1981), 
Kobe et a1 (1982), Kobe (1983) and Lee and Albrecht (1983). A discussion of the 
experimental basis of the formulation can be found in Yang (1982b). 

Let us consider a non-relativistic, spinless charged particle of mass m and charge 
e in the presence of a conservative electrostatic field Eo(r)  = -VVo(r)  and a time- 
varying electromagnetic radiation field E(r,  t )  and B(r ,  t ) .  If we use the potential 
A (r, t )  and @(r, t )  in an arbitrary gauge to represent the time-varying fields, then 

E(r,  t )  = -V@(r,  t ) -c - ’aA(r ,  t ) / a t ,  B ( r , t ) = V x A ( r , t ) .  (2.1) 

The Schrodinger equation and the Hamiltonian in this gauge are thent 

ih+(r, t )  = H ( t ) q ( r ,  t ) ,  

H ( t )  = ( p  - eA /c ) ’ /2m + e V o + e @ .  

According to the gauge-invariant formulation, we first construct the energy 
operator HB(f)  that is determined by 

(HB/df)H = $(J ‘ E + E  J )  -P( t ) ,  (2.4) 

where (dHB/df)H = aH,/at + [HB, H]/ ih .  The symbol J is the current operator associ- 
ated with the Hamiltonian in (2.3), and is therefore, using n = ( p  - e A / c ) / m  to denote 
the velocity operator, 

(2.5) J = ev = e ( p  - e A / c ) / m .  

The operator P ( t )  in (2.4) will be referred to as the power (or Poynting) operator. 
Equation (2.4) is obtained by applying the correspondence principle (Bohr 1928) to 
the classical Poynting theorem and the conservation of energy (e.g. Jackson 1975, 
Yang 1982a, b, Kobe et a1 1982). From the definition of (dHB/dt)H and (2.3)-(2.5), 
it can be shown that 

(2.6) 

which is just the sum of the particle’s Newtonian kinetic energy and the potential 
energy. 

If we use {Es(t)} and { q s ( r ,  t ) }  to denote the eigenvalues and the orthonormal and 
complete (assumed) set of eigenfunctions of HB(f) ,  then$ 

H B ( f )  = ( p  - eA/c) ’ /2m + e  v0, 

The gauge-invariant probability amplitudes {a, ( t ) }  are then defined by 

as(t) = W s ( t ) l W ) ) .  (2.9) 

f Throughout this paper, we use f = df/df if f is a function of time only, and f = af/at if f is a function 
of time and position. 
$Let us note here that the word ‘degenerate’ in the title of this paper refers to the spectrum of the 
‘unperturbed Hamiltonian’ HO = p 2 / 2 m  +eVo, not to the spectrum of the energy operator HB in (2 .6) .  
Because of the presence of the vector potential A in HB, some degeneracy in the spectrum of Ha may be 
removed if there is a magnetic field (see equation (A7)). I am grateful to one referee for kindly pointing 
out that this point should be explained carefully. 
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These amplitudes satisfy the differential equation 

ihbS = Esas +E u , ~ ( ~ , ~ ( e @ - i h a / ~ t ) ~ w , ~ ) .  (2.10) 

As has been shown before (e.g. Yang 1976, Kobe and Smirl 1978), the transition 
matrix elements can be expressed in terms of the power operator. If E, # E,,, then 

S ’  

(qsl(e@-iha/~t) lq , , )  = ih(qslP(t)lPsO/(Es -Es , ) .  (2.11) 

In the rest of this paper, we shall develop a particular type of TDPT to solve for 
the probability amplitudes from (2.10). The procedure will parallel that for a non- 
degenerate system (I). However, because of the extra complexity introduced by the 
degeneracy of bound states and the problems associated with the states in the con- 
tinuum, we will have to be cautious in solving the eigenvalue problem (2.7) perturba- 
tively. This will be discussed in detail in the next section. Finally, we note that for 
the purpose of the TDPT involving the bound states, we shall require that all scalar 
potentials vanish at the origin at all times, which can be accomplished simply by the 
substitution @(r,  t )  + @(r,  t )  - @ ( O ,  t ) .  As has been explained before (I, appendix), such 
a requirement entails no consequences in both the transition matrix elements and the 
probabilities. 

3. Perturbative solutions of the eigenvalue equation 

In this section, we shall discuss in detail the procedures by which the eigenvalues 
{E,(t)} and the eigenfunctions { q s ( r ,  t ) }  are to be solved and the consequences on our 
development of a TDPT. We shall also discuss the physical interpretations associated 
with the ingoing and outgoing scattering states according to the usual static (time- 
independent) scattering theory (e.g. Goldberger and Watson 1964). Such a discussion 
is necessary to provide a basis for using the outgoing scattering states of equation 
(2.7) to define the initial condition for {a,(O)} and the ingoing scattering states to 
define the gauge-invariant probability amplitudes. 

3.1. The Rayleigh-Schrodinger procedure 

For clarity of notation, we will use I$‘) and 9:) for the nth-order corrections in the 
eigenvalue and eigenfunction of state s strictly obtained by the RS procedure for (2.7) 
with the decomposition (e.g. Messiah 1966) 

HEdf) =Ho+ V,(t) + VAL), (3.1) 

where HO =p2/2m +eVo is the usual ‘unperturbed Hamiltonian’ and 

VI = -e (p 0 A + A  - p)/2mc, V, = (eA)’/2mc2. (3.2) 

For bound-state solutions the RS procedure gives, using hw, for ELo’, 
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and so on. Here, the relations between {E:) }  and {Es} and between {q?)} and {q,} are 

The renormalisation required is 

pP,pP,f) = (q:o)p:?)) = a,,,. (3.7) 

As is well known from the RS degenerate perturbation theory (e.g. Messiah 1966, 
pp 698-700), the zeroth-order eigenfunctions {lIrio'} are determined by both (3.3) and 
(3.4). That is, the {q:')} not only must satisfy (3.3) but must also diagonalise VI such 
that 

(P:O)I v,(t,luSr"> = for hw, = hw,.. (3.8) 

Equation (3.8) characterises the differences in the perturbative solutions between the 
non-degenerate and degenerate cases (see appendix). Thus, in general, these zeroth- 
order eigenfunctions are time dependent through the A dependence in VI. Because 
of this A dependence in the zeroth-order eigenfunctions, it will complicate our 
formulation of a time-dependent perturbation theory using the potentials, and hence 
the fields, as the expansion parameters. Let us now investigate this situation more 
closely. 

To begin with, we use {dj ,Jr)}  to denote the eigenfunctions of the 'unperturbed' 
Hamiltonian Ho and some other operators that commute with HO (e.g. L2 and L, for 
the hydrogen atom), with the associated eigenvalues {hwj} ,  where a is the degeneracy 
index: 

Ho4j.u ( r )  = hwdj,u (4 ,  b k , p )  = a j k a a P *  (3.9) 
By comparing (3.3) and (3.9), we may choose s = ( j ,  a) and w s  = wi. Furthermore, it 
also follows that, for each j ,  there exists a unitary matrix (Dj,uP) such that 

q%, t )  = 1 D?u&j,p or 4j ,u  = C ~ W j , o m  (3.10) 

where * denotes the complex conjugate. From now on, we shall use ( j ,  a) for s and 
similar notation for s'  in all of our previous perturbative equations and results. The 
values of El,? and D,,uP are determined by diagonalising the matrix ( F : , , ! ~ )  where 

(3.11) 

It can be shown (see appendix) that all E j . t p ( t )  are gauge invariant, which means 
that all E;,,? and Dj,uP are gauge invariant. Since in general depend on V1 unless 
[ V ~ , H O ] = O  or V x A  =0, it follows that all E;,? and Dj,uP have time and field 
dependence. So, 9;: will in general have these two kinds of dependence. Because 
of this characteristic property, which pertains only to degenerate bound states, the 
'zeroth-order' transition matrix elements {(q:zI - ihdqiz/dt)} will generally be time 
and field dependent (through the dependence of Dj,aP on A(r,  t)) t .  This means that 
if we use the eigenfunctions obtained from the usual RS procedure in (2.10), the 

t For some special field situations, such as a precessing or rotating magnetic field (Giittinger 1931, Schwinger 
1937, Rabi 1937, Yang 1976), the exact matrix elements {(Yi,,I-ihaY,,,/at)} are independent of both the 
time and the magnetic field. The eigenvalues {.E,,-} do depend upon the field (but are time independent). 
For such a situation, the TDPT to be developed here still applies (with iess accurate results), although a 
different treatment is more appropriate. 

P P 

(1) ej,uo(t)  = (4j ,uI  Vl(t)l4j,p). 
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resulting TDPT for the { u ~ , ~ }  will not be in the power series of the fields. To circumvent 
this problem, we will transform (2.10) into another equation in terms of other 
gauge-invariant coefficients such that their nth-order quantities will have exactly the 
nth power dependence on the fields. 

3.2, An alternative procedure 

Our objective is, in preparation for the TDPT, to solve perturbutiuely for the set of 
functions (r,  t ) }  that are defined by 

uf,U (r, = *),a J . ! 3 C Z ,  (3.12) 
P 

which is chosen according to (3.10). From (2.7) and the above, we get 

HBui,a = 1 U J , P E J . P U  where & i . p a  = C D?y,.Z,,Pi,ya* (3.13) 

As is clear from the above equation, the functions {uf,u(r,  r)} are in general not the 
eigenfunctions of HB(r). 

If we expand ul,u and using the potential A as the expansion parameter, then 

P Y 

Uj ,a  = : and Ej ,up  = : E::;. 
n = O  n=O 

(3.14) 

Clearly, ujpu' = 4 j , a ( r )  by (3.91, (3.10) and (3.12). Substituting (3.14) into (3.13) and 
using (3.1), we get 

(3.15) 

and so on. The normalisation required is 

(u;,:)luj,;-mi) = 0 for a l l j  and all n 3 1. (3.17) 

The E s in (3.15) and (3.16) can be derived using a method identical to that for 

(3.18) 

where ai,:; = (4J,uiu;,;)) for n 3 1. Our choices for the first- and second-order 8's are 
(I, appendix): 

(3.19) 

m - 0  

the non-degenerate case. Thus, the { E : , ? ~ }  are given by (3.11) and 
E ) , U @  I21 = (df,Ui v~lul ,~)+(4J,~l  vZ14J.P)-C s : , 2 Y E J , Y P >  (1) 

Y 

a:,% = (ie/c h ~ ~ , ~  I F [ A I I ~ , . , ) ,  
sf,uy (2) = - i ( L 4 ~ , ~ l U ~ , ~ )  + ( i e / 2 c h ) { ( ~ J , u l ~ [ A ] l ~ j , ~ ) + ( I ~ j , ~ ~ ~ ~ A l ~ ~ J , , ) }  (3.20) 

where 
r l  

F [ A ]  = J ds r * A(sr,  t ) .  
0 

(3.21) 

This concludes our investigation into the bound degenerate states. In 8 3.3, we will 
discuss the scattering states. 
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3.3. The scattering-state eigenfunctions 

Here we shall briefly discuss the scattering-state eigenfunctions of both the ‘unpertur- 
bed’ Hamiltonian and the energy operator H B .  Most of these discussions can be found 
in any textbook (e.g. Goldberger and Watson 1964) dealing with the scattering of a 
particle by a static potential. In the case of the scattering-state eigenfunctions of 
HB(t), the time t is treated as a parameter. 

Let us use {4L+)(r)} for the outgoing and {4 i - ) ( r ) }  for the ingoing eigenfunctions 
of Ho, i.e., 

HOdF)(r) = &kdF’(r), E &  = (hk)2/2m. (3.22) 

Similarly, if we use {U r’ (r ,  t ) }  for the outgoing and {U L-’ (r, t ) }  for the ingoing eigenstates 
of HB( t ) ,  then 

H B ( t ) u F ) ( r ,  7 )  = eku):’(r ,  t ) .  (3.23) 

On equation (3.23) we shall also impose the condition that the fields E and B vanish 
outside some finite region. 

The conventional interpretation of 4 r ) ( r )  is that the particle has an incident 
(initial) momentum Ak before it interacts with eVo in Ho, and is then scattered. The 
physical process associated with d i - ) ( r )  is that the particle is measured to have a final 
momentum Ak after it has interacted with eVo.  These same physical interpretations 
will be applied to U:) and U;-’, with the understanding that the fields E(r ,  t )  and 
B(r ,  t )  are ‘suddenly frozen’ at the values at time t. It then follows that the initial 
wavefunction P ( r ,  0) must be denoted by uj+’(r,  0) with Ai as the incident momentum. 
Similarly, the gauge-invariant coefficients in (2.9) must be defined by a k ( t )  = 
(uL-)( t ) /P(t))  since we are interested in the probability amplitudes after the interaction 
with the radiation fields. 

By the standard procedure, we have 

(3.24) 

(3.25) 

where V I  and V2 are listed in (3.2) and 

For our later convenience we shall henceforth suppress the superscripts (-) in all 
wavefunctions and operators pertaining to the ingoing states. That is, we shall use 
4k for 4L-), G B ( E ~ )  for G ; - ’ ( E ~ ) ,  etc. If we expand uk as 

(3.27) 

(3.28) 
(3.29) 

and so on. Note, the normalisation in (3.25) is what we want; there is no need (unlike 
the bound states) to choose the values of ( 4 k l u F ) )  for n 2 1 and k” = kZ. 
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If we assume that the fields E(r ,  t )  and B(r ,  t )  vanish identically everywhere at 

ak(O) = ( U k ( O ) I d + ) ( O ) )  =(4kl4:+)L (3.30) 

regardless of the values of A(r,  0) and @(r, 0). Note, ~ ( 0 )  may not vanish for k # i .  
However, due to the conservation of energy in the static scattering processes, ak(0) = 0 
unless k 2  = i 2 .  This completes our review of the scattering-state eigenfunctions of the 
energy operator. 

t s 0 ,  then it can be shown that 

3.4. Discussions of the bound and scattering states 

One may note that the perturbative solutions of the degenerate bound states are 
obtained differently from those of the scattering states. This is because the bound 
states have very different physical properties from the scattering states. One notes 
that the bound states carry no flux at infinity (in space) whereas the scattering states 
do. Because of this the degenerate bound states have to adjust their distributions of 
probabilities, which causes a change in their eigenenergies. On the other hand, the 
scattering states can always adjust the flow of flux in such a way as to match the initial 
(for outgoing states) or final (for ingoing states) conditions. 

4. Time-dependent perturbation theory 

As we have mentioned in § 3.1 in connection with the degenerate bound states, 
physically we would like to use {Yi,,"k(r, t ) }  in (2.10). This is because each 9;;) is an 
nth-order eigenfunction correction of H B .  However, the {ql,:)} as determined from 
the RS procedure do not have the simple A" dependence. This implies that their use 
in (2.10) will not result in a perturbation theory using potentials and/or fields as the 
expansion parameters. 

To circumvent this problem, we shall use {U;,:)} discussed in 03.3 in (2.10) to 
develop a perturbation theory for a different set of gauge-invariant expansion 
coefficients. We will then discuss how to construct physical quantities from the 
perturbative solutions of these coefficients. After this is done, we will investigate the 
net rates of transition due to the interaction with a single-frequency external radiation 
field. 

4.1. Formulation 

For simplicity of notation and arguments, we shall assume that all bound states have 
degeneracy. 

First, for bound states we define (d , ,a( t )}  by 

d1.a ( t )  = (U1.U (f)IW)), (4.1) 

where Y(r,  t )  is the wavefunction, and {ul,u(r, t ) }  are related to { q j , u ( r ,  t ) }  by (3.12) 
and are solved perturbatively from (3.15) and (3.16). For the scattering states, we 
define 

& ( t )  = ~ ( t )  = (uk ( t ) IWt ) ) ,  (4.2) 
where uk(r, t )  is an ingoing eigenstate of HB(t). 



Gauge-invariant time-dependent perturbation theory: II 927 

If we use the completeness of the direct sum of {ui,OL(r, t ) }  and {uktr, t ) } ,  then 

ihdk = Ekdk t d, , , (ukl(e~-iha/at) lun, , )+C dL, (uLl (e~- i t i a / a t ) juk , ) ,  ( 4 . 3 b )  

where dI,* is the time derivative of d,,u, and similarly for d,. These two equations 
do permit perturbative solutions using potentials and/or fields as the expansion 
parameters. 

In order to put the perturbative form of ( 4 . 3 ~ )  and ( 4 . 3 b )  into one equation, let 
us now alter the notation for the scattering states. From now on, we shall use ( j ,  a) = j  
where j = I j /  and a denotes the solid angle of j ,  and similarly for k = ( k ,  p).  Further- 
more, we shall also use hw, = Ei. Since there is no perturbed eigenvalue for the 
scattering states, we have 

Using this notation convention and substituting the expansions in (3 .14 ) ,  (3 .27)  and 

n.7 k 

for all n L 1 if ( j ,  a) refers to a scattering state. 

into equations (4 .3 ) ,  we have 

n 2 1 .  

m z l ,  (4 .7 )  

(4 .8 )  

Let us note here that (4 .5) - (4 .8)  are practically identical in form to those developed 
for the non-degenerate case (I). Hence, all the proofs of manifest gauge invariance 
and all the results for obtaining the perturbative rates of transitions in I still apply 
here for the expansion coefficients {b::)(t)}. In the following, we shall first discuss 
how to identify physical quantities from the perturbative solutions of these coefficients. 

4.2. Physical interpretation of perturbative solutions 

From the unitarity of the matrix (D,,OLP) in (3 .12)  relating { u ~ , ~ }  to {qj,u}, and from the 
definition in ( 4 . 1 ) ,  we therefore get, for bound states, 

(4 .9 )  

Thus, Pj( t )  is the probability for finding the particle in t h e j  subspace. (The designation 
of the j subspace is convenient for the perturbative solutions only.) The matrix (Dj,ap) 
does not have any physical meaning except that, mathematically, it relates the non- 
eigenfunctions { u ~ , ~ }  to the eigenfunctions {qj,m} of HB. 
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Based on (4.9), we may therefore interpret 
n n 

s;"'(t) = 1 1 a;,;-"' [a;,;+m']* = 1 1 b;,;-"[b;;+"]* (4.10) 

as the nth-order probability in the j subspace, where *, denotes the complex conjugate 
and 

m=O a m=O a 

a:,:) = 1 Dj,opb;.$) exp(-iwjt) (4.11) 

is the nth-order probability amplitude for the particle in the energy eigenstate ( j ,  a). 
As discussed in the appendix, if there is not external field or if the fields are treated 
in the dipole approximation, then each dj,, (t)  is a physically meaningful probability 
amplitude, and hence each dj,:) = bi,;) exp(-iwit) is an nth-order meaningful amplitude. 

The physical interpretation for bi,;) when ( j ,  a) is a scattering state, on the other 
hand, is completely determined by the physical processes associated with the ingoing 
states. According to the discussion in § 3.3, 6::) can be interpreted as a (reduced) 
probability amplitude only after the particle has emerged from the interaction with 
E and B, the time-varying radiation fields. 

P 

4.3. Transition matrix elements 

The transition matrix elements {Mi:,)kP} can be evaluated very simply by using the 
method described for the non-degenerate case (I) when at least one of the states 
involved is a bound state. If both states are the scattering states, then one simply 
uses the perturbative forms in (3.28) and (3.29) in (4.7) and (4.8). Most of these 
matrix elements can be expressed in terms of the first- and second-order power 
operators: 

(4.12) P") = e ( p  * E + E .p)/2mc, P'2' = -e2A * E/mc. 

It can be shown that 

M:b!kp = i[Wjk +io]-'(& lp(1)14k,0) (4.13) 

which is valid except when j = k and ( j ,  a) is a bound state. For bound states, 

v:,?@ = ( d ) J , O  IF[-eEl14,,,), (4.14) 

where F[-eE] can be obtained from (3.21). Under the same conditions that (4.13) 
is valid, we get 

- 1 1 )  (1) Mi:!,@ - 8 ,,a@ + 171.aP, 

M::!kp = i[wjk + io1-'{(41,a IpC1'lu + (U;,? I P ( l ) l 4 k , P )  + (41.a Ip'2'14k.P)) 

+[ih(wJk 1 & : ~ ~ y ( # l , y l P ( " I ~ k , p )  -1 (4,.,IP'1)14k,y)F~la]. (4.15) 

According to our notation convention, if both ( j ,  a) and (k, p )  are scattering states, 
then those terms involving the E ' S  in (4.15) vanish identically. Once again, we will 
not evaluate Mlf!JP for bound states. It can be derived by using (3.20) and relevant 
definitions. 

From (4.12)-(4.15) and our previous knowledge for the non-degenerate case, we 
can immediately write down the first- and second-order net transition rates for bound 
states if the external field is a single-frequency field. 
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4.4. Perturbative rates of transition 

For simplicity of manipulations, we consider an external field of the form 

E ( r ,  t )  = E , @ )  e'"' + E - ( r )  e-'"', (E+)* = E - ,  (4 .16)  

and similarity for B(r,  t )  where * denotes the complex conjugate. Since we have 
already shown that the gauge-invariant procedure is capable of eliminating the 
arbitrariness in the potentials, we may now choose the most convenient set of potentials 
of the form 

(4 .17)  A ( r ,  t )  = A , ( r )  e'"' + A - ( r )  e-'"', @(r,  t )  = 0 ,  

with 

( A + ) *  = A -  and A ,  = r ( c / i w ) E , .  (4 .18 )  

By our previous convention of using the subscripts * and * 2  (I), we have 

Py'  = e (E,  * p + p  * E , ) / 2 m ,  Pgi = - e z A +  E J m c  = *(eE,)'/imw, (4.19)  

(4 .20)  

(4 .21)  

where VI and Vz are listed in (3 .2) .  Similarly, we will decompose the matrix elements 
{kfj:,)k@} according to their frequency dependence as in I. 

From (4 .5 ) ,  (4 .6 ) ,  (4 .10)  and the above definitions, the first-order net transition 
rates are 

Vl,, = - e ( A +  p + p  A , ) / 2 m c  = *(iw) -1 P ,  (1) , 
Vz,,z = (eA,)' /2mc2 = F(i/2w)P+2, (2) 

(4 .22)  

(4 .23)  

where {bi:i(O)} are the initial expansion coefficients that are determined by the initial 
wavefunction V ( r ,  0). If the initial state I is a bound state, then 

(4 .24a)  (1) Nfp,r;t =A4$!r;+  = (i /wfi)(dJf,pIP~'IdJr).  

However, if I refers to a scattering state, then it can be shown that (4 .23)  leads to 

N;i!r;+ = (i /wfi)(4f,p Ip2) by)), (4 .24b)  

where dJr' is an outgoing state with incident momentum hi = (hi, cyi). In either case, 
we may write the two expressions in ( 4 . 2 4 ~ ~ )  and (4 .246)  in terms of the initial 
wavefunction V(r ,  0). Henceforth, this argument will be implicitly assumed in our 
later results. 

Similarly, one can show that the second-order rates of transition for the double- 
frequency excitation and de-excitation are 
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(4.27)  

Here, the double prime in the summation means excluding only the bound-state 
subspace(s) of the initial and the final states. For example, if Z refers to a scattering 
state whereas (f, p )  is a bound state, then the summation over (k, y )  excludes only 
those bound states (k, y )  with k =f. The matrix elements involving the first- and 
second-order power operators are defined by 

P?;fp,ky = (4f,plp?)l4k,y)? p ? ; ) k y , l  = ( 4 k , y l p ? ) l q ( o ) ) ?  

P2i;fp.r = (4f.P IPYi I w W ,  
where we note that the matrix elements with subscript Z are evaluated using the initial 
wavefunction q ( r ,  0) as explained in connection with equations (4 .24) .  We also note 
that, according to our notation convention, E :,ym,;+ = 0 if Z = (i, a i )  is a scattering state. 
Finally, the 77's are defined in (4 .14) .  This formally concludes our formulation of the 
TDPT for a degenerate system. 

5. Conclusions 

In this series of two papers, we have formulated a manifestly gauge-invariant TDPT 
for a non-relativistic, spinless charged particle interacting with classical, external 
electromagnetic fields. We have shown that the gauge-invariant first- and second-order 
perturbative rates of transition agree with their conventional counterparts. But, our 
transition amplitudes and probabilities differ from the conventional onesS. As has 

f There was a missing w in the first term on the right-hand side of equation (4.24) for the non-degenerate 
case (Yang 1 9 8 2 ~ ) .  This term should read 

~ " P ' : , : , [ f i ( + w , , / 2 ) w ( w ~ ,  * w ) l  -lP:,L 

$ When translated into conventional language, these two statements read as follows: 'The gauge-invariant 
and the conventional first- and second-order amplitudes agree on-the-energy-shell but disagree off-the- 
energy-shell.' We will by all means avoid using this conventional language since it is one major source of 
confusion on the subject discussed. For a very detailed explanation of the relationship between gauge 
transformations and the quantum mechanical interpretation of transition probabilities, see Leubner and 
Zoller (1980) and Lee and Albrecht (1983). 
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been shown by Leubner and Zoller (1980) and Lee and Albrecht (1983), it is precisely 
this difference in the transition amplitudes and probabilities that has enabled the 
gauge-invariant formulation to resolve important conceptual and practical difficulties 
in the conventional interpretation of quantum mechanics. 

One important purpose of this series of two papers on the TDPT is to demonstrate 
one simple fact: that the approximations used in solving the differential equations for 
the probability amplitudes, if these equations are not initially manifestly gauge- 
invariant, can alter the gauge properties of some particular-but not all-solutions. 
Shirokov (1981) has also observed this conclusion in his investigations. Thus, the 
investigations of this paper and Yang (1982a, b, c), of Kobe and Yang (1982) and 
Lee and Albrecht (1983) explain why there has been such a confusion over whether 
the conventional interpretation of the quantum mechanical probabilities and ampli- 
tudes is gauge invariant. (For a list of references, see Yang (1982a).) 

However, the most important purpose of our investigation of the gauge-invariant 
formulation is to try to understand the ‘hidden issues’ in the ‘controversy’ of A * p 
versus r E, first raised by Lamb (1952). He observed that his experimental data 
favoured r E as the ‘interaction Hamiltonian’ in a non-perturbative calculation 
involving the two-state approximation, the rotating-wave approximation and the decay 
constants added phenomenologically to simulate the effects of the spontaneous 
emissions. Let us now examine the advantages and the disadvantages of these two 
forms of ‘interaction Hamiltonian’ as the transition operator. 

The main advantage of r E as a transition operator is that it involves explicitly 
the electric field which is directly measurable by classical electromagnetic theory. The 
main disadvantage lies in its explicit dependence on the position operator r. Because 
of this explicit r dependence, the matrix element (d,,, 1 - er * E(0,  t)lq5,) can be physically 
interpreted only when at least one of C # J ~  and q5,, is a bound state (i.e. a localised state). 
If both states q5m and q5,, are in the continuum, such a matrix element loses its physical 
significance since it is rather difficult to imagine the ‘significance’ of the electric dipole 
of a system extending to infinity (in space). To illustrate this difficulty in the multi- 
photon processes, let us consider a third-order resonant transition between two states 
C$i and q5f of a realistic system arising from the interaction with a single-frequency 
external radiation field of angular frequency w.  According to the conventional TDPT 
using r - E as the ‘interaction Hamiltonian,’ the third-order transition amplitude will 
have a term of the form 

Here, m and n must run through the complete set, including the continuum. It is 
here when both m and n are the states in the continuum that, we believe, the r * E  
form as a transition operator is less appropriate. 

We now examine also the advantages and the disadvantages of A - p as a transition 
operator. The main advantage of this form is that it is explicitly independent of the 
position operator r and, since p = -ihV, any displacement in the origin of the coordin- 
ate system still results in the same gradient operator. The main disadvantage of this 
form is that it involves explicitly the vector potential A which, by classical electromag- 
netic theory, cannot be physically measured. However, if we ignore this explicit 
dependence upon the unphysical potentials, A - p is actually more appropriate for the 
matrix elements involving the states in the continuum because of the presence of p .  
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We now summarise the above discussions. Both r * E and A * p have nice proper- 
ties and conceptual defects. Hence either cannot be ‘the true transition operator.’ If 
we combine the nice properties of both operators, we would get p E. However, p 
is not gauge invariant (e.g. Cohen-Tannoudji et a1 1977). A more appropriate form 
for the exact transition operator should take the form [e ( p  - eA/c) - E  + 
E - e ( p  -eA/c)]/2m. Such an operator is both gauge invariant and explicitly depen- 
dent upon E. A comparison of this operator with p * E  also indicates that p * E  is a 
valid first-order transition operator in the perturbation theory (only). 

Having arrived at the operator P = i ( e u  . E  + E  * e u )  where U = ( p  -eA/c)/m, we 
then realise that the arguments by which this operator is derived are phenomenological 
in nature and that a theoretical foundation is lacking. A quick check through any 
textbook on classical electromagnetic theory at once provides us with a sound founda- 
tion: Poynting’s theorem and its interpretation as a conservation law of energy (e.g. 
Jackson 1975). The connection between the classical Poynting theorem and the 
necessary quantum mechanical formulation is then made by invoking the correspon- 
dence principle (Bohr 1928) through the equations of motion of operators. The use 
of Poynting’s theorem is especially important when dealing with spinning particles 
since the Foldy-Wouthuysen (1950) transformations are involved and the consistency 
between the non-relativistic and the relativistic (Dirac) probability amplitudes and 
probabilities becomes a major concern (Yang 1977a, 1982a, Kobe and Yang 1980, 
Yang and Hirschfelder 1980, Yang et a1 1981, Hirschfelder et a1 1982). 

Appendix. Proofs of gauge invariance 

In this appendix, we shall provide a simple proof of the gauge invariance of E : , ? ~ ,  

and E:,? discussed in connection with §§ 3.1 and 3.3, especially with (3.11). Let 
us assume that we have another set of potentials (‘4’, @ I )  that are related to A and 
@ by 

A ’ = A + V x  and W =  @-c-’ax/at. (AI )  

Hf, = (p  - e A ’ / ~ ) ~ / 2 m  +eVo. 

In this gauge, the energy operator Hf, is 

(A21 
Parallelling(3.1),wewriteHf, = H O C  Vi + V;,whereHo=p2/2m +eVoisthe‘unper- 
turbed Hamiltonian’, and 

Vi = -e(p A ’ + A ’  .p)/2mc, Vi  = (eA’)2/2mc2. (A31 
We note that Vi has the same form as V1 in (3.2), and V; the same form as V2. 
This is a basic requirement in the proof of the gauge invariance of the quantities 
{ E : , : ~ }  and so on. 

The gauge invariance of follows from the equality 

(4I.oLIV; I ~ j , p > = ( ~ i , a I V ~ I ~ i , p ) ,  (A4) 
which is a mathematical consequence of the relation 

Vi = V1 + (ie/ch)ly, Ho]. (A51 
Note, (A4) implies the gauge invariance of the quantities involved because the left-hand 
side has the same form and same value as the right-hand side. The gauge invariance 
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of all higher-order quanties {E:,:;} in § 3.2 can be shown using a procedure similar to 
the one used for the non-degenerate case (e.g. Yang 1977b). Equation (A5) also 
implies that (d,,= I V1lr#J,p) = 0 if V X A = 0. 

Because the matrix (D,,up) diagonalises the matrix ( E ; , ? ~ )  (assuming VI breaks up 
the degeneracy in Ho), and because the eigenvalue corrections {E:,:} are the matrix 
elements in the resultant diagonal matrix, it follows that each D,,ap and E:,: is gauge 
invariant. However, since the values of { E l f }  are determined by solving the secular 
equation, 

(A61 

where det denotes the determinant, it follows that El,: will in general be a complicated 
function of the magnetic field and will not be linear in the fields when degeneracy is 
involved. 

As an example, let us consider a particular j with two degenerate states ( j ,  1) and 
( j ,  2). By (A6), the RS first-order eigenenergies E:,'? and E:,? will assume the values 

(11 det(A&p - E j ,ap  1 = 0,  

Thus, in general E:,:) and E:,? will differ from &:,'il and unless V x A = 0 or 
[ V1, Ho] = 0. This means that the matrix (D,,up) cannot in general be chosen to be 
D,,=@ =Sap.  Furthermore, (A7) also indicates that (D,,ap) will in general be both time 
and magnetic field dependent. 

Let us now discuss some special field (or potential) situations of particular interest. 
If V x A = 0, which corresponds to no magnetic field regardless of whether the electric 
field is present, then it can be shown that E:,:' = 0 or E:,%\ = 0 for all IZ t 1 (e.g. Yang 
1977b). Under this situation, we set D,,ao = Sap. The consequence is that the coefficient 
(u, ,a\ '4f(f)) ,  where uJ,a is defined in (3.12) and V(r, t )  is the wavefunction, can be 
interpreted as the physically meaningful probability amplitude for finding the particle 
in energy hw,. This simply follows from (3.12). A better discussion on this point is 
presented by Leubner and Zoller (1980). 
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